
OBJECT ORIENTED PROGRAMMING
LAB 4 – COPY CONSTRUCTORS (Cont.), DESTRUCTORS, FUNCTIONS WITH OBJECT ARGUMENT AND
OBJECT REFERENCE

EXAMPLE 1

The copy constructors are constructors which receive as parameters a reference to an object of
the same class. In case such constructors do not exist, the compiler will automatically generate
a copy constructor and will copy bit by bit the attributes. The default copy constructor will
copy each member variable of the object received as parameter into the newly created object.
This is called performing an intelligent member copy.

While this bit by bit copy is good for regular variables, this can’t be stated for pointer –type
variables. The pointer-type variable for the two objects (the original and the clone) will point
to the same memory region, which can be an advantage or a source of many errors (when this
memory area is released but member objects whose member variables point to this memory
area).

The solution to having the compiler generate the copy constructor (and potentially causing
problems on classes with pointer-type data members) is building our own copy constructor like
in the following example.

This example will also introduce

 the destructor, as a special function member (method) that is called when the object is
about to be destroyed.

 other functions (not member functions), that reference objects and/or take an object as
an argument – we will demonstrate the order of calling for the constructor and other
operation with these function

On simple examples it does nothing, but on more complex examples it handles cleaning up
after the object - including releasing memory, restoring program state (to prequel of object
creation).

#include<iostream>

using namespace std;

class FORCE

{//Attributes for class Force (are private by default)

 double mass;

 double acceleration;

//Methods for class Force

 public:

 FORCE(double m, double a);//Initialization of constructor with
arguments

 FORCE(const FORCE&);//Initialization of copy constructor

 ~FORCE();//Initialization of destructor

 double Mass(void) { return mass;}//Method returning the mass of the
object

};

FORCE::FORCE(double m, double a)// Expand the constructor with arguments

{

 mass=m;//retain value of 1st parameter passed to the constructor

 //in attribute mass

 acceleration=a;//retain value of 2nd parameter passed to the constructor

 //in attribute acceleration

 cout<<"Passing through the constructor with arguments \n";//Print out a
debug

 //message to know the order of calling instructions in our program

}

FORCE::FORCE(const FORCE &g)//Write the copy constructor

{

 mass=g.mass;// copy value of mass attribute of generic object g

 // of class type FORCE g

 //into variable mass

 acceleration=g.acceleration;// copy value of attribute acceleration

 // of generic object g of type FORCE

 //into variable acceleration

 cout<<"Passing through copy constructor \n";

}

FORCE::~FORCE()//Write the destructor

{

 cout<<"Passing through destructor \n";

}

void idle1()//Function idle1 called by main()

 //useful to understand the order of instructions

{

 cout<<"Entering function idle ONE \n\n";

}

FORCE idle2(FORCE &f)//function idle2 that acquires a ref to an object

 //of type FORCE and then it returns it

 //after a message to the user

{

 cout<<"Entering function idle TWO \n\n";

 return f;

}

FORCE idle3(FORCE f)//function idle3 that calls an object (not ref)

 //of type FORCE and then it returns it

 //after a message to the user

{

 cout<<"Entering function idle THREE \n\n";

 return f;

}

int main()

{//Call constructors with parameter

cout << " f1" <<endl;

/*1*/ FORCE f1(0,0);

cout << " f2" <<endl;

/*2*/ FORCE f2(4.3,9.9);

 f1=FORCE(f2);//Using the copy constructor to copy attribute values

 //from source object f2 into destination object f1

cout << "calling idle1" <<endl;

 idle1();//Call function idle1

//Call constructors with parameters

cout << "f3" <<endl;

/*3*/ FORCE f3(7.5,9.8);

cout << "f4" <<endl;

/*4*/ FORCE f4(0,0);

cout << "f4 <- copy <- f3" <<endl;

 f4=FORCE(f3);//Using copy constructor to copy values for attributes

 //from object f3 into object f4

cout << "calling idle2" <<endl;

 FORCE f5 = idle2(f4); // Get the result of idle2(),

 //passing a reference to class type

 FORCE f6 = idle3(f4); // Get the result of idle3(),

 // passing an argument of class type

 // to show usage of copy constructor in this scenario as
well

 cout << "The mass of the final force (#6): " << f6.Mass() << endl;//Return
final force from object f5

 return 0;//Program will end returning 0 to the environment that called it

}

Conclusions:

In function Idle for which the name has no meaning, there are two cases:

1. When receiving a reference as an argument, the function (Idle) displays the info
message followed by the constructor message. The latter is caused by the fact returning
an object of the class type is similar to calling a constructor (a temporary
variable/object will be created to hold the return value).

2. When receiving an object of the class type, it will call the constructor first so it will
show the constructor message, and only afterward it will show the info message inside
the idle function.

Note: Function Idle is not a member function of the class so it does not show up in class
declaration, in the beginning of the program.

EXAMPLE 2
The second example from this lab deals with inheritance: we want to show the simplest
inheritance scenario, public in the base class followed by public in the inherited (public-
public).

In lab 5 we will re-instantiate this example for the public-private scenario.

#include <iostream>
using namespace std;

class BASE
{//create class BASE
 int x;//private member / attribute
 public://the following will be public
 void initX(int n)//setter for x
 {x=n;}
 void getX()//getter for x
 {cout<<x;}

};//always close the class with semicolon ;!

class DERIVATE:public BASE
{//create a derivate class
 int y;//private member / attribute
 public://the following will be public
 void initY(int n)//setter for y
 {y=n;}
 void getY()//getter for y
 {cout<<y;}
};

int main()
{//create the derivate class object.
 DERIVATE D1;
 D1.initX(10);//set the value for x: OK(no errors)
 D1.initY(20);//set the value for y: OK(no errors)
 D1.getX();//display the value for x: OK(no errors)
 D1.getY();//display the value for y: OK(no errors)
}

Because all the data is visible due to public inheritance, we have no error on accessing the
methods of the derived class nor the base class.

A third example in today’s lab is the source code for a program implementing a polynomial.

We want to create a class Polynomial to define a polynomial, as well as creating a function to
implement the polynomial multiplication. For starters, we need to initiate within the class the
degree and free coefficient of a polynomial via unsigned grad variable and an array of type
coef[50].

The functions to be implemented and used are:

 Setting the polynomial degree - void setDegree(unsigned x);
 Setting a specific coefficient - void setCoef (int x, int y);
 Getting the polynomial degree - int getDegree();
 Getting a specific coefficient - int getCoef (int x);
 Constructor without parameter - Polynomial();
 Constructor with parameter - Polynomial(int x);
 Friend function to multiply to polynomials;

Form of a polynomial:

a0xn+a1xn-1+…+anx0;
a0,a1,…a n – coefficients
n – polynomial degree

#include <iostream>

using namespace std;

class Polynomial
{

 unsigned degree; //declare variable: degree
 float coef[50]={0}; //declare array for the coefficients of the polynomial

 public:

 void setDegree(int x); // setter for the degree
 void setCoef (int x, float y); // setter for a specific coefficient y on position
x
 int getDegree(); //getter for polynomial degree
 float getCoef (int x); //getter for a specific polynomial coefficient on position
x
 Polynomial(int x); //constructor with parameters, setting x degree for the
polynomial
 Polynomial(); //no parameter constructor, setting polynomial degree to 0
 friend void multiply(Polynomial *p1,Polynomial *p2, Polynomial *p3); //polynomial
multiplication function
};
Polynomial::Polynomial()
{
 degree=0; //set degree 0 for constructor with no parameters

}

Polynomial::Polynomial(int x)
{
 degree=x; //set degree to parameter for constructor with parameter x

}
void Polynomial::setDegree(int x)
{
 degree=x; //set degree to argument value
}
void Polynomial::setCoef(int x, float y)
{
 coef[x]=y; //set coef[x] to value y
}
int Polynomial::getDegree()
{
 return degree;
}
float Polynomial::getCoef(int x)
{
 return coef[x]; //return value of x from array coef
}
void multiply(Polynomial *p1,Polynomial *p2, Polynomial *p3) //Multiply 2
polynomials p1 and p2 and write the result into p3, a third polynomial
{
 p3->degree=p1->degree+p2->degree; //degree of new polynomial is the sum of the two
polynomials to be multiplied (egg: the degree of the multiplication of: x^2+x+2 and x+3,
will be 3)

 for(unsigned i=0;i<=p1->degree;i++)
 for(unsigned j=0;j<=p2->degree;j++)
 p3->coef[i+j]+=p1->coef[i]*p2->coef[j];

}
int main()
{
 Polynomial p1,p2,p3;
 int i=0;
 int x;
 cout<<"Degree of first polynomial : ";
 cin>>x;
 if(x<0)
 {

 cout<<" Polynomial can’t have a negative degree. ";
 return 0;

 }

 p1.setDegree(x);

 for(unsigned i=0;i<=p1.getDegree();i++)
 {
 cout<<"Coefficient "<<i<<" is :";
 cin>>x;
 p1.setCoef(i,x);
 }

 cout<<"Degree of second polynomial : ";

 cin>>x;
 p2.setDegree(x);
 if(x<0)
 {

 cout<<"Polynomial can’t have a negative degree. ";
 return 0;

 }

 for(unsigned i=0;i<=p2.getDegree();i++)
 {
 cout<<"Coefficient "<<i<<" is :";
 cin>>x;
 p2.setCoef(i,x);
 }
 multiply(&p1,&p2,&p3);
 i=p3.getDegree();
 if(p3.getCoef(i)<0)
 cout<<"-";
 x=0;

 for(;i>=0;i--) // Display
 {
 if(p3.getCoef(i)!=0)
 {

 if((p3.getCoef(i)==1||p3.getCoef(i)==-1)&&i!=0)
 {
 cout<<"x^"<<i;
 x++;
 }
 else if((p3.getCoef(i)==1||p3.getCoef(i)==-1)&&i==0)
 {
 cout<<p3.getCoef(i);
 x++;
 }
 else if(p3.getCoef(i)!=1)
 {
 cout<<p3.getCoef(i)<<"x^"<<i;
 }
 }
 if(i!=0&&p3.getCoef(i-1)>0)
 cout<<"+";
 }
 if(x==0)
 cout<<x;

 return 0;
}

Homework.

H4.1. Create an example class Product, with data members string product_type, string
product_name, string barcode, float price. Implement setters, getters and a friend function to
compare prices.

H4.2. Modify the example to implement an inherited class DiscountedProduct, which also
has a data member float discount which applies to the product_name, if the product_type is
“discount”. By default, products have no discount (unless otherwise set).

H4.3. Implement a friend function that computes the price for the following array of
DiscountedProducts (it should discount Cola from 3.99 to ~0.99 and the total should become
~4.99).

soft_drink Cola 1234 3.99 1
food Fruit 1356 3.99 1
discount Cola 0000 0 0.25

